Grupos funcionais do solo: papel das comunidades microbianas especializadas na ciclagem de nutrientes e sensores de distúrbios ambientais
PDF (Português (Brasil))


uso da terra
enzimas do solo
mudanças climáticas

How to Cite

Cavalcante, F. G., Bandeira, L. L., Leite, L. O., da Silva, A. O., Mesquita , A. de F. N., de Matos Neto, J. M., Martins, C. M., & Martins , S. C. S. (2023). Grupos funcionais do solo: papel das comunidades microbianas especializadas na ciclagem de nutrientes e sensores de distúrbios ambientais. Cuadernos De Educación Y Desarrollo, 15(9), 8676–8698.


A biodiversidade do solo desempenha um papel fundamental na manutenção de suas funções. Os grupos funcionais microbianos incluem microrganismos especializados na ciclagem biogeoquímica, estando envolvidos nos processos de decomposição e mineralização da matéria orgânica. O objetivo deste trabalho foi revisar os principais grupos funcionais do solo, como os distúrbios bióticos e abióticos afetam essas comunidades e seu potencial como bioindicadores. Os principais grupos estão relacionados com os ciclos do carbono, nitrogênio, fósforo e ferro. Incluem bactérias celulolíticas, fixadoras de nitrogênio, solubilizadoras de fósforo, produtoras de sideróforos, entre outras. Estudos demonstram que esses grupos são impactados por fatores como mudanças no uso da terra, fertilizantes, mecanização e mudanças climáticas. O monitoramento da dinâmica funcional dessas comunidades permite avaliar alterações na funcionalidade do solo. Diversas abordagens podem ser utilizadas para investigar esses grupos, desde técnicas tradicionais até modernas. O uso desses microrganismos como indicadores possibilita a gestão sustentável do solo.
PDF (Português (Brasil))


ABDEL-SATER, M. A.; EL-SAID, A. H. M. Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes. International Biodeterioration & Biodegradation, v. 47, n. 1, p. 15-21, 2001.

ARGIROFF, W. A. et al. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots. Global Change Biology, v. 25, n. 12, p. 4369-4382, 2019.

ARMENISE, E. et al. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, v. 130, p. 91-98, 2013.

AVELLANEDA-TORRES, L. M. et al. Potato cultivation and livestock effects on microorganism functional groups in soils from the neotropical high Andean Páramo. Revista Brasileira de Ciência do Solo, v. 44, 2020.

BARBIER, E. B.; BURGESS, J. C.; DEAN, T. J. How to pay for saving biodiversity. Science, v. 360, n. 6388, p. 486-488, 2018.

BERLEMONT, R. et al. Cellulolytic potential under environmental changes in microbial communities from grassland litter. Frontiers in Microbiology, v. 5, n. 639, 2014.

BOLO, P. et al. Application of residue, inorganic fertilizer and lime affect phosphorus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a Ferralsol. Geoderma, v. 390, p. 114962, 2021.

CHENG, L. et al. Screening and identification of pectinolytic bacteria for ramie degumming. Textile Research Journal, v. 91, n. 9-10, p. 1056-1064, 2021.

CORWIN, D. L. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, v. 72, n. 2, p. 842-862, 2021.

DATTA, R. et al. Enzymatic degradation of lignin in soil: a review. Sustainability, v. 9, n. 7, e1163, 2017.

DAULAGALA, P. W. H. K. P. Chitinolytic endophytic bacteria as biocontrol agents for phytopathogenic fungi and nematode pests: a review. Asian Journal of Research in Botany, v. 5, p. 14-24, 2021.

DELGADO-BAQUERIZO, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, v. 7, 10541, 2016.

DINEL, H.; SCHNITZER, M.; MEHUYS, G. R. Soil lipids: origin, nature, content, decomposition, and effect on soil physical properties. Soil Biochemistry, p. 397-430, 2017.

DOBRZYŃSKI, J. et al. The reaction of cellulolytic and potentially cellulolytic spore-forming bacteria to various types of crop management and farmyard manure fertilization in bulk soil. Agronomy, v. 11, n. 4, p. 772, 2021.

DORAN, J. W.; PARKIN, T. B. Defining and assessing soil quality. Em: Defining soil quality for a sustainable environment, Ed. J. W. Doran, D. C. Coleman, D. F. Bezdicek e B. A. Stewart, Special Publication Number 35, p. 1-21, 1994.

DORAN, J. W.; PARKIN, T. B. Quantitative indicators of soil quality: a minimum data set. Methods for Assessing Soil Quality, v. 49, p. 25-37, 1997.

DROBNIK, T. et al. Soil quality indicators–From soil functions to ecosystem services. Ecological Indicators, v. 94, p. 151-169, 2018.

ESCALAS, A. et al. Microbial functional diversity: From concepts to applications. Ecology and Evolution, v. 9, n. 20, p. 12000-12016, 2019.

ETESAMI, H.; JEONG, B. R. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant: a review. Frontiers in Plant Science, v. 12, p. 1355, 2021.

FADIJI, A. E.; AYANGBENRO, A. S.; BABALOLA, O. O. Shotgun metagenomics reveals the functional diversity of root-associated endophytic microbiomes in maize plant. Current Plant Biology, v. 25, p. 100195, 2021.

FERREIRA, M. J.; SILVA, H.; CUNHA, A. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere, v. 29, n. 4, p. 409-420, 2019.

GREGORUTTI, V. C.; CAVIGLIA, O. P. Impact of crop aerial and root biomass inputs on soil nitrifiers and cellulolytic microorganisms. Soil and Tillage Research, v. 191, p. 85-97, 2019.

GUERRA, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science, v. 371, n. 6526, p. 239-241, 2021.

GUOYONG, Y. A. N. et al. Long-time precipitation reduction and nitrogen deposition increase alter soil nitrogen dynamic by influencing soil bacterial communities and functional groups. Pedosphere, v. 30, n. 3, p. 363-377, 2020.

HENNERON, L. et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytologist, v. 228, n. 4, p. 1269-1282, 2020.

HUGOUVIEUX‐COTTE‐PATTAT, N.; CONDEMINE, G.; SHEVCHIK, V. E. Bacterial pectate lyases, structural and functional diversity. Environmental Microbiology Reports, v. 6, n. 5, p. 427-440, 2014.

IMRAN, A. et al. Diazotrophs for lowering nitrogen pollution crises: looking deep into the roots. Frontiers in Microbiology, v. 12, e637815, 2021.

ISOBE, K. et al. Consequences of microbial diversity in forest nitrogen cycling: diverse ammonifiers and specialized ammonia oxidizers. The ISME Journal, v. 14, n. 1, p. 12-25, 2020.

JONIEC, J. Indicators of microbial activity in the assessment of soil condition subjected to several years of reclamation. Ecological Indicators, v. 98, p. 686-693, 2019.

JOUFFRET, V. et al. Increasing the power of interpretation for soil metaproteomics data. Microbiome, v. 9, n. 1, p. 1-15, 2021.

KAMAU, J. W. et al. Occurence of pectinolytic bacteria causing blackleg and soft rot of potato in Kenya. Journal of Plant Pathology, v. 101, n. 3, p. 689-694, 2019.

KAVITHA, R.; BHUVANESWARI, V. Assessment of polyethylene degradation by biosurfactant producing ligninolytic bacterium. Biodegradation, v. 32, n. 5, p. 531-549, 2021.

KOECHLI, C. et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biology and Biochemistry, v. 130, p. 150-158, 2019.

KUYPERS, M. M.; MARCHANT, H. K.; KARTAL, B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, v. 16, n. 5, p. 263-276, 2018.

LAMBERS, H. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, v. 73, p. 11-126, 2022.

LAURETO, L. M. O., CIANCIARUSO, M. V., SAMIA, D. S. M. Functional diversity: an overview of its history and applicability. Natureza & Conservação, v. 13, n. 2, p. 112-116, 2015.

LEMANOWICZ, J. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environmental Science and Pollution Research, v. 25, n. 33, p. 33773-33782, 2018.

LIANG, S., GROSSMAN, J., SHI, W. Soil microbial responses to winter legume cover crop management during organic transition. European Journal of Soil Biology, v. 65, p. 15-22, 2014.

MAIKHURI, R. K.; RAO, K. S. Soil quality and soil health: A review. International Journal of Ecology and Environmental Sciences, v. 38, n. 1, p. 19-37, 2012.

MARINARI, S. et al. Soil development and microbial functional diversity: proposal for a methodological approach. Geoderma, v. 192, p. 437-445, 2013.

MATUOKA, M. A. et al. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecological Indicators, v. 116, e106471, 2020.

MESQUITA, A. F. N. et al. In vitro co-inoculation of rhizobacteria from the semi-arid aiming at their implementation as bio-inoculants. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 58, n. 1, p. 59-66, 2023.

MUÑOZ-ROJAS, M. Soil quality indicators: critical tools in ecosystem restoration. Current Opinion in Environmental Science & Health, v. 5, p. 47-52, 2018.

NORTCLIFF, S. Standardization of soil quality attributes. Agriculture, Ecosystems & Environment, v. 88, n. 2, p. 161-168, 2002.

NOTTINGHAM, A. T. et al. Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils, v. 54, n. 2, p. 219-228, 2018.

OSZUST, K.; FRĄC, M. First report on the microbial communities of the wild and planted raspberry rhizosphere–A statement on the taxa, processes and a new indicator of functional diversity. Ecological Indicators, v. 121, p. 107-117, 2021.

PASTORE, G.; KERNCHEN, S.; SPOHN, M. Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils. Soil Biology and Biochemistry, v. 151, p. 108050, 2020.

PENN, C. J.; CAMBERATO, J. J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, v. 9, n. 6, p. 120, 2019.

POWERS, R. P.; JETZ, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, v. 9, n. 4, p. 323-329, 2019.

QING, W. A. N. G et al. Research progress on the effect of soil fumigation on soil nitrogen cycles and functional microorganisms. Chinese Journal of Pesticide Science, v. 23, n. 6, p. 1063-1072, 2021.

RAWAT, P. et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, v. 21, n. 1, p. 49-68, 2021.

RESHMY, R. et al. Microbial valorization of lignin: Prospects and challenges. Bioresource Technology, v. 344, e126240, 2022.

ROMEU, E. et al. Atividade lipolítica in vitro de actinobactérias em gradiente de pH, salinidade e temperatura. Enciclopédia Biosfera, v. 18, n. 38, p. 114-126, 2021.

SAHU, A. K. et al. Isolation and characterization of lipolytic bacteria from oil contaminated soil from petrol bunk at southeast Bangalore. Asian Journal of Pharmaceutical Research and Development, v. 7, n. 2, p. 30-34, 2019.

SANTINONI, I. et al. Effect of transgenic soybean on functional groups of microorganisms in the rhizosphere in soil microcosm. Agronomy Science and Biotechnology, v. 5, n. 1, p. 11-11, 2019.

SHARMA, S., KUMAR, V., TRIPATHI, R. B. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of microbiology and Biotechnology Research, v. 1, n. 2, p. 90-95, 2017.

SHAHRAJABIAN, M. H. et al. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, v. 11, n. 6, p. 819, 2021.

SILABAN, S.; MARIKA, D. B.; SIMORANGKIR, M. Isolation and characterization of

amylase-producing amylolytic bacteria from rice soil samples. Em: Journal of Physics: Conference Series. IOP Publishing, p. 012006, 2020.

SOFO, A.; RICCIUTI, P. A standardized method for estimating the functional diversity of soil bacterial community by Biolog® EcoPlatesTM assay—The case study of a sustainable olive orchard. Applied Sciences, v. 9, n. 19, p. 4035, 2019.

SIMS, J. T.; CUNNINGHAM, S. D.; SUMNER, M. E. Assessing soil quality for environmental purposes: roles and challenges for soil scientists. Journal of Environmental Quality, v. 26, n. 1, p. 20-25, 1997.

SUN, W.; SHAHRAJABIAN, M. H.; CHENG, Q. Nitrogen fixation and diazotrophs–a review. Romanian Biotechnology Letters, v. 26, n. 4, p. 2834-2845, 2021.

TANG, A. et al. Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, v. 8, n. 3, p. 442, 2020.

THAPA, S. et al. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Reviews in Environmental Science and Bio/Technology, v. 19, n. 3, p. 621-648, 2020.

THIRUPPATHI, K. et al. Evaluation of textile dye degrading potential of ligninolytic bacterial consortia. Environmental Challenges, v. 4, e100078, 2021.

TIWARI, S. et al. Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands. Journal of Environmental Management, v. 242, p. 1-10, 2019.

TORSVIK, V., ØVREÅS, L. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, v. 5, n. 3, p. 240-245, 2002.

TUMANE, P. M. et al. Production of pectinase enzyme by pectinolytic bacteria isolated from fruit waste dumping soil samples. International Journal of Research and Analytical Reviews, v. 5, n. 3, p. 826-835, 2018.

VERMA, D.; KUMAR, R.; SATYANARAYANA, T. Diversity in xylan-degrading prokaryotes and xylanolytic enzymes and their bioprospects. Em: Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, Singapore, p. 325-373, 2019.

WANG, C. et al. Land-use change has a greater effect on soil diazotrophic community structure than the plant rhizosphere in acidic ferralsols in southern China. Plant and Soil, v. 462, n. 1, p. 445-458, 2021b.

WANG, H. et al. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, v. 9, n. 9, p. 1988, 2021a.

WANG, W.; LIANG, C. Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation. Scientific Reports, v. 11, n. 1, p. 1-11, 2021.

WILHELM, R. C. et al. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. The ISME Journal, v. 13, n. 2, p. 413-429, 2019.

WIYONO, S. et al. Abundance of soil microbes, endophytic fungi and blast disease of paddy rice with three pest management practices. Biodiversitas, v. 21, n. 9, p. 4234-4239, 2020.

XIE, H. et al. A bibliometric analysis on land degradation: Current status, development, and future directions. Land, v. 9, n. 1, p. 28, 2020.

YU, J. I. A.; WHALEN, J. K. A new perspective on functional redundancy and phylogenetic niche conservatism in soil microbial communities. Pedosphere, v. 30, n. 1, p. 18-24, 2020.

YU, S. et al. Changes in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest. Ecology and Evolution, v. 9, n. 19, p. 11344-11352, 2019.

ZAK, J. C. et al. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, v. 26, n. 9, p. 1101-1108, 1994.

ZHANG, K. et al. A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw. Energy Conversion and Management, v. 199, p. 111928, 2019.

ZHANG, Z. et al. Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers, denitrifiers and ammonifiers? European Journal of Soil Biology, v. 74, p. 60-68, 2016.